3.52 \(\int \frac {\tan (x)}{(a+b \cot ^2(x))^{3/2}} \, dx\)

Optimal. Leaf size=84 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}+\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2}} \]

[Out]

arctanh((a+b*cot(x)^2)^(1/2)/a^(1/2))/a^(3/2)-arctanh((a+b*cot(x)^2)^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)+b/a/(a-b)/
(a+b*cot(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3670, 446, 85, 156, 63, 208} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}+\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[x]/(a + b*Cot[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Cot[x]^2]/Sqrt[a]]/a^(3/2) - ArcTanh[Sqrt[a + b*Cot[x]^2]/Sqrt[a - b]]/(a - b)^(3/2) + b/(a
*(a - b)*Sqrt[a + b*Cot[x]^2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 85

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p +
 1))/((p + 1)*(b*e - a*f)*(d*e - c*f)), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[((b*d*e - b*c*f - a*d*f - b
*d*f*x)*(e + f*x)^(p + 1))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan (x)}{\left (a+b \cot ^2(x)\right )^{3/2}} \, dx &=-\operatorname {Subst}\left (\int \frac {1}{x \left (1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\cot (x)\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x (1+x) (a+b x)^{3/2}} \, dx,x,\cot ^2(x)\right )\right )\\ &=\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}-\frac {\operatorname {Subst}\left (\int \frac {a-b-b x}{x (1+x) \sqrt {a+b x}} \, dx,x,\cot ^2(x)\right )}{2 a (a-b)}\\ &=\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\cot ^2(x)\right )}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x}} \, dx,x,\cot ^2(x)\right )}{2 (a-b)}\\ &=\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cot ^2(x)}\right )}{a b}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cot ^2(x)}\right )}{(a-b) b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \cot ^2(x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2}}+\frac {b}{a (a-b) \sqrt {a+b \cot ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 75, normalized size = 0.89 \[ \frac {a \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {b \cot ^2(x)+a}{a-b}\right )+(b-a) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {b \cot ^2(x)}{a}+1\right )}{a (a-b) \sqrt {a+b \cot ^2(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[x]/(a + b*Cot[x]^2)^(3/2),x]

[Out]

(a*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Cot[x]^2)/(a - b)] + (-a + b)*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b
*Cot[x]^2)/a])/(a*(a - b)*Sqrt[a + b*Cot[x]^2])

________________________________________________________________________________________

fricas [B]  time = 1.01, size = 863, normalized size = 10.27 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)/(a+b*cot(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*(2*(a^2*b - a*b^2)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 + (a^2*b - 2*a*b^2 + b^3 + (a^3 - 2*a^2*b + a
*b^2)*tan(x)^2)*sqrt(a)*log(2*a*tan(x)^2 + 2*sqrt(a)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 + b) - (a^3*tan(
x)^2 + a^2*b)*sqrt(a - b)*log(((2*a - b)*tan(x)^2 + 2*sqrt(a - b)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 + b
)/(tan(x)^2 + 1)))/(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*tan(x)^2), 1/2*(2*(a^2*b - a*b^2)*
sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 - 2*(a^3*tan(x)^2 + a^2*b)*sqrt(-a + b)*arctan(-sqrt(-a + b)*sqrt((a*
tan(x)^2 + b)/tan(x)^2)/(a - b)) + (a^2*b - 2*a*b^2 + b^3 + (a^3 - 2*a^2*b + a*b^2)*tan(x)^2)*sqrt(a)*log(2*a*
tan(x)^2 + 2*sqrt(a)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 + b))/(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^
4*b + a^3*b^2)*tan(x)^2), 1/2*(2*(a^2*b - a*b^2)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 - 2*(a^2*b - 2*a*b^2
 + b^3 + (a^3 - 2*a^2*b + a*b^2)*tan(x)^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*tan(x)^2 + b)/tan(x)^2)/a) - (a^3*
tan(x)^2 + a^2*b)*sqrt(a - b)*log(((2*a - b)*tan(x)^2 + 2*sqrt(a - b)*sqrt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2
 + b)/(tan(x)^2 + 1)))/(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*tan(x)^2), ((a^2*b - a*b^2)*sq
rt((a*tan(x)^2 + b)/tan(x)^2)*tan(x)^2 - (a^2*b - 2*a*b^2 + b^3 + (a^3 - 2*a^2*b + a*b^2)*tan(x)^2)*sqrt(-a)*a
rctan(sqrt(-a)*sqrt((a*tan(x)^2 + b)/tan(x)^2)/a) - (a^3*tan(x)^2 + a^2*b)*sqrt(-a + b)*arctan(-sqrt(-a + b)*s
qrt((a*tan(x)^2 + b)/tan(x)^2)/(a - b)))/(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*tan(x)^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)/(a+b*cot(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a sub
stitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perha
ps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing
 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution vari
able should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.W
arning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check
[abs(t_nostep)]Error: Bad Argument Type

________________________________________________________________________________________

maple [C]  time = 0.90, size = 962, normalized size = 11.45 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(x)/(a+b*cot(x)^2)^(3/2),x)

[Out]

-(a*cos(x)^2-b*cos(x)^2-a)*(2^(1/2)*((cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)-a*cos(x)+b*cos(x)+a)/(cos
(x)+1)/b)^(1/2)*(-2*(cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)+a*cos(x)-b*cos(x)-a)/(cos(x)+1)/b)^(1/2)*E
llipticF((-1+cos(x))*((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)/sin(x),((8*a^(3/2)*(a-b)^(1/2)-4*a^(1/2)*(a-b)^(1
/2)*b+8*a^2-8*a*b+b^2)/b^2)^(1/2))*b*sin(x)+2*2^(1/2)*((cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)-a*cos(x
)+b*cos(x)+a)/(cos(x)+1)/b)^(1/2)*(-2*(cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)+a*cos(x)-b*cos(x)-a)/(co
s(x)+1)/b)^(1/2)*EllipticPi((-1+cos(x))*((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)/sin(x),1/(2*a^(1/2)*(a-b)^(1/2
)-2*a+b)*b,(-(2*a^(1/2)*(a-b)^(1/2)+2*a-b)/b)^(1/2)/((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2))*a*sin(x)-2*2^(1/2
)*((cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)-a*cos(x)+b*cos(x)+a)/(cos(x)+1)/b)^(1/2)*(-2*(cos(x)*a^(1/2
)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)+a*cos(x)-b*cos(x)-a)/(cos(x)+1)/b)^(1/2)*EllipticPi((-1+cos(x))*((2*a^(1/2)*
(a-b)^(1/2)-2*a+b)/b)^(1/2)/sin(x),1/(2*a^(1/2)*(a-b)^(1/2)-2*a+b)*b,(-(2*a^(1/2)*(a-b)^(1/2)+2*a-b)/b)^(1/2)/
((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2))*b*sin(x)-2*2^(1/2)*((cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)-a
*cos(x)+b*cos(x)+a)/(cos(x)+1)/b)^(1/2)*(-2*(cos(x)*a^(1/2)*(a-b)^(1/2)-a^(1/2)*(a-b)^(1/2)+a*cos(x)-b*cos(x)-
a)/(cos(x)+1)/b)^(1/2)*EllipticPi((-1+cos(x))*((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)/sin(x),-1/(2*a^(1/2)*(a-
b)^(1/2)-2*a+b)*b,(-(2*a^(1/2)*(a-b)^(1/2)+2*a-b)/b)^(1/2)/((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2))*a*sin(x)+(
(2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)*b*cos(x)-((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)*b)/(-1+cos(x))/sin(x)^
2/((a*cos(x)^2-b*cos(x)^2-a)/(-1+cos(x)^2))^(3/2)/((2*a^(1/2)*(a-b)^(1/2)-2*a+b)/b)^(1/2)/(a-b)/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \relax (x)}{{\left (b \cot \relax (x)^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)/(a+b*cot(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tan(x)/(b*cot(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 0.48, size = 1451, normalized size = 17.27 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(x)/(a + b*cot(x)^2)^(3/2),x)

[Out]

atanh((2*a^2*b^8*(a + b/tan(x)^2)^(1/2))/((a^3)^(1/2)*(2*a*b^8 - 12*a^2*b^7 + 30*a^3*b^6 - 38*a^4*b^5 + 24*a^5
*b^4 - 6*a^6*b^3)) - (12*a^3*b^7*(a + b/tan(x)^2)^(1/2))/((a^3)^(1/2)*(2*a*b^8 - 12*a^2*b^7 + 30*a^3*b^6 - 38*
a^4*b^5 + 24*a^5*b^4 - 6*a^6*b^3)) + (30*a^4*b^6*(a + b/tan(x)^2)^(1/2))/((a^3)^(1/2)*(2*a*b^8 - 12*a^2*b^7 +
30*a^3*b^6 - 38*a^4*b^5 + 24*a^5*b^4 - 6*a^6*b^3)) - (38*a^5*b^5*(a + b/tan(x)^2)^(1/2))/((a^3)^(1/2)*(2*a*b^8
 - 12*a^2*b^7 + 30*a^3*b^6 - 38*a^4*b^5 + 24*a^5*b^4 - 6*a^6*b^3)) + (24*a^6*b^4*(a + b/tan(x)^2)^(1/2))/((a^3
)^(1/2)*(2*a*b^8 - 12*a^2*b^7 + 30*a^3*b^6 - 38*a^4*b^5 + 24*a^5*b^4 - 6*a^6*b^3)) - (6*a^7*b^3*(a + b/tan(x)^
2)^(1/2))/((a^3)^(1/2)*(2*a*b^8 - 12*a^2*b^7 + 30*a^3*b^6 - 38*a^4*b^5 + 24*a^5*b^4 - 6*a^6*b^3)))/(a^3)^(1/2)
 - (atan(((((a - b)^3)^(1/2)*(((a + b/tan(x)^2)^(1/2)*(2*a^3*b^7 - 10*a^4*b^6 + 22*a^5*b^5 - 26*a^6*b^4 + 16*a
^7*b^3 - 4*a^8*b^2))/2 + (((a - b)^3)^(1/2)*(12*a^5*b^7 - 2*a^4*b^8 - 28*a^6*b^6 + 32*a^7*b^5 - 18*a^8*b^4 + 4
*a^9*b^3 + ((a + b/tan(x)^2)^(1/2)*((a - b)^3)^(1/2)*(8*a^5*b^8 - 56*a^6*b^7 + 160*a^7*b^6 - 240*a^8*b^5 + 200
*a^9*b^4 - 88*a^10*b^3 + 16*a^11*b^2))/(4*(a - b)^3)))/(2*(a - b)^3))*1i)/(a - b)^3 + (((a - b)^3)^(1/2)*(((a
+ b/tan(x)^2)^(1/2)*(2*a^3*b^7 - 10*a^4*b^6 + 22*a^5*b^5 - 26*a^6*b^4 + 16*a^7*b^3 - 4*a^8*b^2))/2 + (((a - b)
^3)^(1/2)*(2*a^4*b^8 - 12*a^5*b^7 + 28*a^6*b^6 - 32*a^7*b^5 + 18*a^8*b^4 - 4*a^9*b^3 + ((a + b/tan(x)^2)^(1/2)
*((a - b)^3)^(1/2)*(8*a^5*b^8 - 56*a^6*b^7 + 160*a^7*b^6 - 240*a^8*b^5 + 200*a^9*b^4 - 88*a^10*b^3 + 16*a^11*b
^2))/(4*(a - b)^3)))/(2*(a - b)^3))*1i)/(a - b)^3)/(2*a^3*b^6 - 6*a^4*b^5 + 6*a^5*b^4 - 2*a^6*b^3 - (((a - b)^
3)^(1/2)*(((a + b/tan(x)^2)^(1/2)*(2*a^3*b^7 - 10*a^4*b^6 + 22*a^5*b^5 - 26*a^6*b^4 + 16*a^7*b^3 - 4*a^8*b^2))
/2 + (((a - b)^3)^(1/2)*(12*a^5*b^7 - 2*a^4*b^8 - 28*a^6*b^6 + 32*a^7*b^5 - 18*a^8*b^4 + 4*a^9*b^3 + ((a + b/t
an(x)^2)^(1/2)*((a - b)^3)^(1/2)*(8*a^5*b^8 - 56*a^6*b^7 + 160*a^7*b^6 - 240*a^8*b^5 + 200*a^9*b^4 - 88*a^10*b
^3 + 16*a^11*b^2))/(4*(a - b)^3)))/(2*(a - b)^3)))/(a - b)^3 + (((a - b)^3)^(1/2)*(((a + b/tan(x)^2)^(1/2)*(2*
a^3*b^7 - 10*a^4*b^6 + 22*a^5*b^5 - 26*a^6*b^4 + 16*a^7*b^3 - 4*a^8*b^2))/2 + (((a - b)^3)^(1/2)*(2*a^4*b^8 -
12*a^5*b^7 + 28*a^6*b^6 - 32*a^7*b^5 + 18*a^8*b^4 - 4*a^9*b^3 + ((a + b/tan(x)^2)^(1/2)*((a - b)^3)^(1/2)*(8*a
^5*b^8 - 56*a^6*b^7 + 160*a^7*b^6 - 240*a^8*b^5 + 200*a^9*b^4 - 88*a^10*b^3 + 16*a^11*b^2))/(4*(a - b)^3)))/(2
*(a - b)^3)))/(a - b)^3))*((a - b)^3)^(1/2)*1i)/(a - b)^3 - b/((a*b - a^2)*(a + b/tan(x)^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan {\relax (x )}}{\left (a + b \cot ^{2}{\relax (x )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)/(a+b*cot(x)**2)**(3/2),x)

[Out]

Integral(tan(x)/(a + b*cot(x)**2)**(3/2), x)

________________________________________________________________________________________